660/Math. 22-23 / 52118

B.Sc. Semester-V Examination, 2022-23 MATHEMATICS [Programme]

Course ID: 52118 Course Code: SP/MTH/501/DSE-1A
Course Title: Theory of Equations

OR

Linear Programming

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their

own words as far as practicable.

Notations and synbols have their usual meaning.

(Theory of Equations)

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) Apply Descartes' rule of signs to determine the total number of real roots of the equation $x^n 1 = 0$, when n is odd.
 - b) If $x^3 + 3px + q$ has a factor of the form $(x-a)^2$, then show that $q^2 + 4p^3 = 0$.
 - c) Form the cubic equation whose two roots are $5, 2+\sqrt{7}$.

- d) Find the condition that the roots of the equation $x^3 px + qx r = 0$ are in geometric progression.
- e) Find the quotient and remainder when $x^4 1 = 0$ is divided by x 2.
- f) Remove the second-degree term from $x^3 15x^2 33x + 847 = 0$ using translation.
- g) Find the equation whose roots are reciprocal to the roots of $x^3 + 2x^2 - 2 = 0$.
- h) Calculate the first Sturm's function of the equation $x^4 + 4x^3 x^2 2x 5 = 0$.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) i) Find the remainder when $x^{10} + x^7 + x^4 + x^3 + 1$ is divisible by $x^2 + 1$.
 - ii) If $x^2 + px + 1$ is a factor of $ax^3 + bx + c$, then prove that $a^2 - c^2 = ab$. 3+2
 - b) Solve the cubic equation $x^3 9x + 28 = 0$ by Cardon's method.
 - c) Find the equation each of whose roots is greater by 2 than a root of the equation $x^3 - 5x^2 + 6x - 3 = 0$.

- d) i) If α , β , γ is the roots of the equation $x^3 + px + q = 0$, then find the equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$, $\frac{\gamma}{\gamma}$, $\frac{\gamma}{\beta}$, $\frac{\alpha}{\gamma}$.
 - ii) State Rolle's theorem for algebraic equation. 4+1
- e) i) Find the special roots of the equation $x^6 = 1$.
 - ii) Show that the equation $x^3 3x^2 9x + 27 = 0$ has a multiple root. 2+3
- f) If α be an imaginary root of $x^n 1 = 0$, where n is a prime number, prove that $(1-\alpha)(1-\alpha^2)...(1-\alpha^{n-1}) = n$.
- 3. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Show that the equation

$$x^4 + 4x^3 - 2x^2 - 12x = 0$$

has four real and unequal roots.

ii) Solve

$$x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$$

considering $2-\sqrt{3}$ as its one root.

- iii) Let α , β , γ be the roots of the equation $x^3 + qx + r = 0$, then find the value of $\sum \frac{1}{\alpha^2 \beta \gamma}.$ 4+3+3
- b) i) Obtain the upper and lower limit of the positive roots of f(x)=0, where $f(x)=x^5-4x^3+x^2-x+1.$
 - ii) Show that the equation

$$x^n - nqx + (n-1)r = 0$$

will have a pair of equal roots if $q^n = r^{n-1}$.

iii) Solve the equation

$$x^4 - 7x^3 + 14x^2 - 2x - 12 = 0$$

one root being $(1+\sqrt{3})$. 3+3+4

(Linear Programming)

1. Answer any **five** questions:

 $2 \times 5 = 10$

[Turn Over]

- a) Define convex set with example.
- b) By using artificial variables (In case of solving the LPP by Big M-Method) convert the following LPP in standard form only.

Maximize
$$z = 4x_1 - 3x_2 + x_3$$

subject to $x_1 + x_2 + 2x_3 = 5$
 $2x_1 - 3x_2 + x_3 = 2$
 $x_1, x_2, x_3 \ge 0$.

- c) Prove that a hyperplane is a convex set.
- d) Show that $x_1 = 5$, $x_2 = 0$, $x_3 = -1$ is a basic solution of the system of equations

$$x_1 + 2x_2 + x_3 = 4$$
, $2x_1 + x_2 + 5x_3 = 5$

e) Find the dual of the following linear programming problem:

Minimize
$$z = -6x_1 - 8x_2 + 10x_3$$

subject to $x_1 + x_2 - x_3 \ge 2$
 $2x_1 - x_3 \ge 1$
 $x_1, x_2, x_3 \ge 0$.

f) What do you mean by a balanced transportation problem?

(5)

 $\begin{bmatrix} 2 & 4 & 0 \\ 3 & 6 & 7 \end{bmatrix} \quad 4$ $b_{j} \quad 9 \quad 10 \quad 11$

Obtain an initial basic feasible solution to the following transportation problem using the

h) Solve the following game problem and find the value of the game.

3	-2
-2	3

2. Answer any **four** questions:

 $5 \times 4 = 20$

 Following is the starting tableau of an LPP by the simplex method (for a maximization problem), in an incomplete form

•			c_{j}						
C_{B}	В	X_{B}	b	a_{1}	a_2	a_3	a_{4}	a_5	a_6
0	a_4	x_4	2	2	1	1			
0	$a_{\scriptscriptstyle 5}$	x_5	5	1	2	3			
0	a_6	x_6	6	2	2	1			
	$(z_j - c_j)$			-3	-1	-3	0	0	0

i) Complete the objective row and the tableau.

- ii) Write down the LPP in its standard form from the tableau.
- iii) Write down the actual problem.
- iv) Find the departing and the entering vectors and write down the next tableau.

$$1+1+1+2$$

b) i) Solve the LPP by graphical method

Maximize
$$z = x_1 + x_2$$

subject to
$$5x_1 + 10x_2 \le 50$$

$$x_1 + x_2 \ge 1$$

$$x_2 \leq 4$$

$$x_1, x_2 \ge 0$$

Determine the position of the points (-6, 1, 7, 2) and (1, 2, -4, 1) with respect to the hyperplane $3x_1 + 2x_2 + 4x_3 + 7x_4 = 8$.

2

3

c) Solve by "Big M-method":

Maximize
$$z = 4x_1 + 2x_2$$

subject to
$$2x_1 + x_2 \le 4$$

$$5x_1 + 3x_2 \ge 15$$

$$x_1, x_2 \ge 0$$

d) Give the dual of the following linear programming problem and hence solve it

Maximize
$$z = 3x_1 - 2x_2$$

subject to $x_1 \le 4$

$$x_2 \le 6$$

$$x_1 + x_2 \le 5$$

$$-x_2 \le -1$$

$$x_1, x_2 \ge 0$$

e) Find the minimum cost solution for the 4×4 assignment problem whose cost coefficient are as given below

f) Show that, for the game problem

a	0
0	b

The optimal strategies are $\left(\frac{b}{a+b}, \frac{a}{a+b}\right)$ and

$$\frac{ab}{a+b}$$
 is value of the game.

3. Answer any **one** question:

$$10 \times 1 = 10$$

- a) i) Determine the convex hull of the points (0, 0), (0, 1), (1, 2), (1, 1), (4, 0).
 - ii) Solve by simplex method:

Maximize
$$z = 4x_1 + 14x_2$$

subject to
$$2x_1 + 7x_2 \le 21$$

$$7x_1 + 2x_2 \le 21$$

$$x_1, x_2 \ge 0$$

Will the above LPP admit an alternative solution? Give reason. If yes, then find another solution of the above LPP.

$$2+(5+3)=10$$

b) i) For what value of λ , the game with the following pay off matrix is strictly determinable 5

the zero sum game into equivalent linear programming problem and solve it by simplex method.

Player Q

	Q_1	Q_2	Q_3
P_{1}	9	1	4
P_{2}	0	6	3
$P_{_3}$	5	2	8

Player P
